
In conclusion we want to point out that the calculations were carried out with a lat- 
tice 21 x 21. Control calculations with a lattice 41 x 41 showed that the relative devia- 
tion of the sought values in the entire range of the calculation lay within 3%. 

NOTATION 

R, ~, z, cylindrical coordinates; r, @, 0, cylindrical polar coordinates; Ro, zo, co- 
ordinates of the point 0; v, w, u, velocity components in the system of cylindrical polar 
coordinates; ~, flow function; m, vorticity; ~, q, new variables; p, pressure; Re, Reynolds 
number; A~, An, steps of the lattice; H, vector of discrepancies of the Navier--Stokes equa- 
tions; AX, &Y, vectors of corrections for the sought solution. 
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FINITE-DIFFERENCE SOLUTION OF THE CONJUGATE HEAT TRANSFER, 

NATURAL CONVECTION, AND SOLIDIFICATION PROBLEM 

F. V. Ned.pekin and S. S. Petrenko UDC 532.54:536.252 

A mathematical model of the solidification of a binary melt under convection condi- 
tions with a two-phase zone taken into account is formulated on the basis of average 
transfer equations. Results of a numerical solution are presented. 

The solidification of binary alloys is characterized by the presence of an intermediate 
domain which is a heterogeneous mixture of the liquid and solid phases and a so-called two- 
phase zone. As is known, the reason for the formation of such a zone [i] is the development 
of concentration and kinetic supercooling. 

Two approaches exist for the compilation of the heat, mass, and momentum balance equa- 
tions for the two-phase zone in a mathematical description of melt solidification. In one 
formal replacement of the heterogeneous by a homogeneous medium is assumed, where the thermo- 
physical parameters of the latter are defined as average. Then the process is described by 
equations for a homogeneous medium. Here can also be referred the method of using effective 
physical, experimentally determined, parameters in these equations. 

The second approach, which possesses great generality, is based on the mechanics of multi- 
phase media [2] and assumes the examination of the two-phase zone in the approximation of 
average macrocontinuums [3]. The selection of the averaging method is also quite important 
here. Averaging over the volume of macropoints, executed according to known rules, is the 

most natural. 

In this paper, both approaches are applied in formulating the problem. The average heat 
and mass transfer differential equations 

I ~ c ,  + (l - -  ~) c~]  aT ~ (1) r)t- ~-c~p(l --~:)i,>vT~ VI~.~v~T+~2V(I--~) T] ~- Lp 0~. 
~ Ot ' 

oc o~ (2) 
( I - - ~ ) ~ - - , v I D v ( I - - ~ ) C I + ( I - - k ) C  Ot 
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are formulated by using the generalized balance equation for macropoints [3]. 

The flow of the melt is examined without taking account of the influence of the phase 
shrinkage, hence, the problem is formulated under the condition of approximate equality of 
the solid and liquid phase densities. 

Equation (2) is obtained under the assumption that diffusion is negligible in the solid 
phase, while the impurity is distributed uniformly in the liquid within the limits of the 
macropoints. This permits expressing the mean impurity concentration relative to the inter- 
phasial surface in the solid phase in terms of the true mean-volume value of the concentra- 
tion in the melt by the relationship C~ = kC. 

Melt motion in the liquid core of the ingot and in the liquid--solid domain of the two- 
phase zone is described, because of its temperature inhomogeneity, by the transport equation 
of the average velocity vortex ~ and the Poisson equation for the stream function ~: 

.... OT 
+PV~.~ = V ( W f l ) + g ~  ~ -  ( I - -D, (3) 

at 
A ~  = --f~,  (4) 

where v = Vo (i -- 5~) is the effective kinematic viscosity coefficient taking the Einstein 
correction into account [4] under the assumption of disperseness of the medium in the domain 
of the two-phase zone. 

The stream function ~ is associated with the true mean-volume velocity of the melt by 
relationships satisfying the continuity equation for an incompressible fluid: 

( 1 - - ~ ) V ~ - -  0 ~  ( 1 - - ~ ) Y v =  0W 
" o F  ' - -  a-x- 

System (1)-(4) can be closed by the equation of the liquidus line on the Fe-C phase dia- 
gram in conformity with the quasiequilibrium theory of the two-phase zone of Borisov [i]: 

T = - -  c~C + T,~. (5)  

It should be noted that the formulated system (1)-(5) permits investigation of the 
thermal convection in not only the liquid core of the ingot but also in the liquid--solid 
domain of the two-phase zone (0 -.< ~ ~< Sd)" The approximate "freezing" condition [5] is not 
relied upon here. 

In dimensionless form (1)-(5) are written as follows 

OS 1 A ( 1 - - ~ ) S  ' ( I - - ~ ) S  8~ (6)  
( I - - ~ )  OFo - Lu OF----~' 

O0 V [(1 + iD V0I + [XV~_ (1 _ ~) v] V0 ~ LA~, (7) 
' e  aFo 

80 
g):o ..... Pr V [(1 - -  5~) V@ - -  vV o) -"- Gr*Pr'~ (1 - -  ~) Ox ' (8)  
c) Fo 

A r  = - -  ~o, ( 9 )  

0 -- q,S ' (i0) 

where e e = 1 + c$ -- W(~$/30) is the modified specific heat, and c = ci/e2 -- i; ~ = ~i/12 -- i; 
= ~Co/To; ~0 = Tk/To. 

By using (i0) the diffusion equation (6) is converted in the transport equation for a 
fraction of the solid phase [6] 

O0 
Lu -- -- A0 

( 1 - - k )  Lu ~ - a ~ + - - 2 - - ~ - - .  V0V~-- OFo (1 - -~ i  (11)  
O Fo 0 - -  q;o 0 - -  % 

In contrast to the system used in [7] system of equations (7)-(9), (ii) formulated takes 
account of the contribution of components containing V~ and b~ to the mass- and heat-transfer 
processes. The value of these latter quantities can be quite substantial in the initial 
solidification stage when the two-phase zone is narrow and the distribution of ~ most in- 
homogeneous. 
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Formulation of the mathematical model is completed by formulating the boundary condi- 
tions. Because of axial symmetry, half the domain is considered. It is assumed that the 
temperature is distributed homogeneously over the whole domain at the initial instant, there 
is no solid phase, and the melt is fixed: 

0]Fo=_0 =- l ,  ~}Fo~0 ~- OtFo~0 == ~JFo-=0 = O. (12)  

On t h e  a x i s  o f  symmet ry  0y 

6~ ~ aOl  
CJx=o =~: (')I,;-.--o : :  - '~ -x  i ' =  & :  11,:=o .... b. (13) 

8" Ix,0 

The upper boundary of the domain (the mirror image of the melt) P~ is heated by the exo- 
thermal charge, whose thermal action can, according to [8], be described as follows: 

O, O . ~ F o ~ F o ~ ,  
O(t-i-) ,~)O r ,  ~' " 8g = 0 , 1 2 r o , , ~ F % - - F o 0 ,  Fo1<Fo<Fo~ (14) 

0,, ~, Fo ~ Fo.,, 

where Fo2 = 2Foi = 0.254 (2400 see). 

Processing the experimental data existing in the literature permits obtaining an ex- 
pression also for the density of the heat flux along the normal to the ingot surface in a 
firebrick-heated feeder head (F2) and its body (F3), respectively: 

~ (1 -;- ~,~) 0 ] ~ 0.059 O.O0~- 
On 11"... Fo -!- 0,692 (15) 

:-,(I -...7',~.~ 0 i ,: 0 , 0 1 8 1  -!-.-0,161 (16) 

,9;! iG Fo , 0,0121 

The boundary condition for (ii) isdetermined from the condition of no average impurity 
concentration flux through the ingot surface --(~x 7(I -- ~)S IF~+F=+F s = O, or taking (10)into 

account 

@~.Vlfi--~i~(%--fl)J>ir~}.:,=.+r ' i.. (17) 

On the liquidus boundary (F4) the following condition is valid 

~ir , -  ~. (18) 

On the boundaries Fi, s rs and the decanting boundary P5 

~!r,-, r~ : .&  i-s~ ~ i~ (19) 

We determine the boundary conditions for (8) for the finite-difference approximation. 

The presence of nonlinear and nonstationary differential equations in the system (7)-(9), 
(ii) determines mainly the general structure of the algorithm. At each instant, solution of 
the whole system is divided into two stages (blocks). In the first, the solution is executed 
for (7) and (ii), which are included in the interaction process relative to 0 and ~. In the 
second stage, (8) and (9) are solved, where the fields 0 and ~ found in the first stage are 
used. Furthermore, the system is solved in the same sequence in the next instants, etc. 
Within the limits of the block, the two-dimensional equations are decomposed into one-dimen- 
sional equations by the method of variable directions with subsequent approximation of the 
one-dimensional equations by the monotonic scheme of A. A. Samarskii. 

In particular, for the heat-transport equation (7) in the Ox direction, we have 

6(-) .... q0 [ O O0 " 0O (20)  h ( k 00 ,~ -f-- q - - k -!- ;~ -i- ?0 
[ . t . - 

where k = i + X~; rl = X(3(/3x) -- (i -- ~)Vx; r2 = X(3~/3y) -- (1 -- ~)Vy; q = celO.5T -- XA~. 

Subsequent application of the integrointerpolation method in combination with the method 
of perturbed coefficients [9] assures the conservativity and monotonicity of the implicit 
difference scheme of second-order accuracy. The difference equations are reduced to canonical 

form. 
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Fig. I. e stream function ~ (a-d) and location 
of the solidification boundaries (e, f) (numbers at the curves 
are time in min) for ingots heated by firebrick (a, c, d) and 
heat-insulated inserts (b, d, f), a, b) t = I min, c, d) t = 5 min. 

For (20) we have 

A0 ~+~ ~ ~ ~ v' ~j ~ vi~+~ = -- Fj~ (21) J i,j--! 

where j = i, 2, ..., N; i = i, 2, ..., M is the number of mesh nodes a!~e Ox and Oy, respec- 
tively, ei,j is the difference analog of 8(x, y, Fo), Aj = kj(~j/~j- by)/hj:Bj = kj+~(~j/Nj + 
b+j)/hj+1; Cj =+Aj + Bj + qj; ~j = i/(i + Rj) is the "perturbation" coefficient, and Rj = 
0.5hjlrjI/kj; b-j = 0.5(rj • Irjl)/kj- 

Equations (8) and (ii) are approximated in an analogous manner. The system of alge- 
braic equations of the type (21) is solved by the factorization method. 

The boundary conditions for (8) are obtained separately (in connection with the curvi- 
linearity of the boundary) for the 0x and 0y directions by the expansion of ~ into a Taylor 
series around points of the boundary on which the adhesion condition is satisfied: 

~ , . J ~ - -  .:-T' + , ~ , . j = - -  + , . j | .  ( 2 2 )  
k~ \ 09 ~/I, J ! 

where I, J are the coordinates of the mesh boundary nodes. At the time when the whole metal 
is liquid, this boundary is the internal surface of the ingot mold, which is replaced by the 
decantability boundary as the melt solidifies. The number of nodes per nonsolidifying part 
of the melt is gradually reduced, consequently, the values of I and J for all the boundary 
points are determined in each time layer. In the case of agreement between the direction of 

the boundary surface and the directionof the coordinate planes during crystallization, con- 
dition (22) takes the form of the Thom condition [i0]. The Poisson equation (9) is solved 
by the iteration method of varible directions. 

A nonuniform 24 x 25 mesh with condensation at the solid boundaries and rarefaction 
around the Oy axis was used in the computation. Because of the slope of the side wall of the 
ingot mold, the lattice step h N depends linearly on the number of lines i, which required 
appropriate correction of @ in the near-wall nodes. The time step x varied between 0.3-i0-"- 
0.3,10 -2 while the steps for the space coordinates were h i = 0.02-0.33 and hj = 0.02-0.05. 

The computation was carried out for a three-ton sheet ingot of killed steel mark St. 3 
under the following initial parameters Co = 0.16%, ATo = 4K, Xo = 0.21 m, H/Xo = 6.7, the 
coincity of the ingot is 1.75, c~ = 696 J/kg.K, c= = 788 J/kg.K, %~ = l= = 26.5 W/m-K, a = 
4.67,10 -6 m2/sec, vo = 0.75-10 -6 m~/sec, L = 2.74.105 J/kg, ~d = 0.2, qo = 1.93"I0 s W/m 2. 
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Fig. 2. Dependence on the time t (min): a) kinetic energy of 
the melt E k (J), thermal energy E T (J), b) ingot body, c) head 
part of the ingot; i) heating by heat-insulated inserts; 2) 
by chamotte. 

Analysis of the streamline behavior (Fig. i) permits classification of the melt motion 
in the liquid core of the ingot as the flow in a vertical layer whose feature is the nuclear 
structure. Such a flow was observed in the solidification of a one-component melt with a 
plane interphasal boundary [Ii], as well as in experimental [12] and numerical [13] investi- 
gations of the natural convection in a vertical layer. The origination of secondary vortices 
is evidently associated with the hydrodynamic instability of the up and down flow [14]. The 
nuclear structure magnifies the heat transfer in the transverse direction of the domain. 
Considering the values of ~ within the limits of each vortex, it is easy to note that the 
most intensive melt motion occurs in the central part of the ingot in the initial solidifica- 
tion stage (Fig. la). The vortices with maximal intensity are localized with time in the 
upper half of the ingot (Fig. ic). The values of ~ hence fluctuate with time. For a selec- 
ted initial heating, the convection in the ingots lasts 30-35 min, the magnitude of the 
velocity during the first 14-16 min is reduced from ~3 to ~0.i cm/sec. 

The melt kinetic energy is pulsating in nature (Fig. 2a). A sudden flareup in convec- 
tion intensity is observed within the first three minutes of solidification and caused the 
development of the maximal temperature gradient in this same period. Meanwhile, the thermal 
energy varies monotonely (Fig. 2b), which indicates its more conservative nature as compared 
with the kinetic energy. 

In investigating the heat transfer between the ingot head and body, it is clarified that 
the heat does not yield heat to the ingot body during the first 2-3 min of solidification, 
but conversely, is its consumer (Fig. 3a). Later, the direction of the total heat flux Q 
becomes opposite on the ingot head-body boundary (Fig. 3b). 

In the last stages of solidification Q grows. This is due to the rise in the gradient 
of T on the ingot head-body boundary because of liberation of the latent heat of crystalliza- 
tion of the still solidifying melt in the head together with the absence of this liberation 
in the almost solidified body of the ingot. 

The convective motion of the melt in the liquid core and the two-phase zone affects the 
kinetics of solidification by increasing the rate of ingot solidifying. Moreover, growth of 
the two-phase zone is observed in the bottom part of the ingot in a vertical direction in 
addition to a diminution in its extent in the horizontal direction in a part under the head. 
Therefore, because of the development of the two-phase zone in the bottom part, conditions 
are degraded for "feeding" the solidifying ingot. As is known [15], this can contribute to 
the development of a physical inhomogeneity (the appearance of "bridges," secondary shrinkage 
blisters). 

One of the most widespread methods of raising the yield of a workable metal is improve- 
ment of the heat insulating properties of the ingot mold heater. Hence, from the practical 
viewpoint it is important to know how the heat transport, hydrodynamics, and kinetics pro- 
cesses of solidification vary here. To this end, a modification was analyzed with heating of 
the heat of the material that would assure an ~7 times reduction in the heat flux. At the 
initial time the domain with maximal value of the velocity is shifted to the lower third of 
the ingot (Fig. Ib), which is due to an analogous shifting of the maximal temperature gradient. 
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Fig. 3. Dependence of the heat flux Q (W) through the ingot 
head-body boundary on the time t (min) in the convection ac- 
tive phase period [a), convection damping and degeneration 
(b); I) heating by chamotte; 2) heat-insulated inserts]. 

TABLE I. Difference in the Thickness of the 
Solidified Metal Under Heating by Chamotte and 
by Heat Insulated Inserts 

t, m i l l  
along Ox on the part 

on the Oy axis under the head 

5 

!O 

20 

30 

40 

2,7.10-5 

8,2.10-4 

1,2.10 -4 

8,4. I0-~ 

2,1.10 -4 

6~7.10 -a 

2,7.10 -8 

4 , 1 . 1 0  - 3  

l , l . l O - a  

5,0.10 -'j 

As in the case of heating by chamotte, as solidification occurs the domain with maximal value 
of @ is shifted to the parts under the head and at the head (Fig. id). The time to reach the 
greatest intensity of motion almost does not change but the intensity itself diminishes 1.5-2 
times on the average (Fig. 2a) and the duration of the existence of convection increases. 

Magnification of the heating reduces the rate of ingot congealing, especially its head 
part (Figs. 2b and c). The heat-transfer mode governs the kinetics of ingot shaping. Magni- 
fication of the heat insulation of the head part of the ingot diminishes the rate of hori- 
zontal solidification in its part under the head and has almost no effect on the vertical 
solidification rate (see Table I). 

A computation established that when materials with high heat insulation properties is 
used in the heater, a liquid crater (feeding channel) with high conicity and small depth as 
compared with the slightly heated ingot (Figs. le and f)is formed in the head and body of 
the ingot. This permits the assumption that a rise in the heat-insulating qualities of the 
heater will contribute to obtaining ingots with a smaller degree of damage by the primary 
shrinkage blisters, meaning, a higher quality. 

NOTATION 

O = T/To, S C/Co, x = X/Xo, Fo ta/X~, § = = v = V/Vo, m, @, dimensionless temperature, 
true mean-volume concentration in the liquid phase, horizontal coordinate, time, mean-volume 
velocity, velocity vortex, and stream function; Lu = a/D, Pr = vo/a, Gr* = gBToX~/~, W = L/ 
c2To, Lewis, Prandtl, Grashof, and crystallization numbers, respectively; ~, ~d, relative 
content of solid phase at an arbitrary macropoint and at the decanting boundary; T, Tk, ATo, 
temperatures of a macropoint and of pure iron solidification, and of initial melt heating, 
~ C, C~, Co, true mean-volume concentration in the liquid and solid phases, initial, wt. %; 
X, Y, Xo, H, horizontal and vertical coordinates, characteristic dimension of th$ domain 
(arithmetic mean of the upper and lower bases), domain height, m; t, time, sec; V, Vx, Vy, 
Vo = a/Xo, true mean-volume velocity vector of the liquid phase, the horizontal and vertical 
velocity components, the characteristic velocity; a, vo, coefficient of thermal diffusivity 
and the kinetic coefficient of viscosity of the melt, m2/sec; g, absolute value of the free- 
fall acceleration vector, m/sec2; p, liquid phase density at To, kg/m3; 8, thermal coefficient 
of volume expansion, I/K; ~, mean volume value of the velocity vortex, i/sec; L, latent heat 
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of crystallization, J/kg.K; 11, 12, solid and liquid phase heat conduction coefficients, W/ 
m~ k, equilibrium impurity distribution coefficient; 5, slope of the liquidus line on the 
phase diagram, %K; qo, characteristic heat flux, W/m2; and ci, c2, solid and liquid phase 
specific heats, J/kg.K. 
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